
Characterizing Technical
Software Performance
Within System of Systems
Acquisitions: A Step-Wise
M th d lMethodology
Software Engineering Institute
C i M ll U i itCarnegie Mellon University
Pittsburgh, PA 15213

B Meyer J WesselB. Meyer, J. Wessel
May 2010

© 2010 Carnegie Mellon University

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Characterizing Technical Software Performance Within System of
Systems Acquisitions: A Step-Wise Methodology (BRIEFING CHARTS)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Software Engineering
Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 22nd Systems and Software Technology Conference (SSTC), 26-29 April 2010, Salt Lake
City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

39

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Introduction

System of systems (SoS), either directed as a program, acknowledged
as a set of programs or emergent as in collaborative or virtualas a set of programs, or emergent as in collaborative or virtual
varieties*, ALL need a way to assess software performance (SWP):

• Assess causes of SWP issues
• Determine indicators and measures of SWP
• Plan SWP measurement in tests

Fundamental question: Will software enable planned capabilities
within end-to-end field environment?

We provide a 10-step method for planning/assessing SWP, allowing for
respective improvement of architecture and test processesp p p

Our method is based on experience within a major directed SoS Service
Orientated Architecture (SOA) DoD acquisition program

* S “E l i E t i S t f S t d S t d S ft A hit t ” b P l C Cl t SEI 2009

2
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

* See “Exploring Enterprise, System of Systems, and System and Software Architectures” by Paul C. Clements, SEI, 2009.

Illuminating the Software Performance ‘Cave’
Requirements X Test EventsLate Project

Test
Events^

Design DocumentsTest
Events^^

j

Unknown,
UndefinedUndefined

Unknown but
(Partially to
Fully) Defined

Unknown,Unknown,
Undefined

*= Partially to Fully based on fidelity and thoroughness
^= focused, lower fidelity

3
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

^^=Higher fidelity/scale

Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key
3 - Make sample

scenarios:
4 - Make list of

metrics (indicate
layout

performance view
resource limiters

from layout
What are sources

of performance
impacts in each?

sources,
architecture ties if

known)

6 - Find test events 7 - Circulate 5 - Add in required
that have occurred:
Rate the maturity of

each for each
metric

results/vetting:
What metrics and

events are
missing?

SWP metrics from
documents (quality/

best practice/
critical resources) g)

8 - Use populated
t i t i t 9 - Use architecture metrics matrix to

plan future tests
and mine data from
existing data sets

tie-ins to improve
software

performance

10 - Determine
repeat schedule

4
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

An Example SoS Layout

This schematic represents the SoS
t t i hi h th l ft

System of Systems

context in which the example software
was delivered

System Applications using services reside at
the system level and assume services

are instantiated on blades

System

Processing Unit

Blade Middleware

(Blade) OS(Blade) OS

This is one of multiple context views
i d it h t ll

Service
Instance of
Discoverable

Service

required; it was chosen to allow
further break down of performance

affecting sources

5
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Notional SoS Layout: On a Processing Unit

Blade Server
Processing Unit

(or Rack)

Blade in same
Processing Unit

()

Fiber Channel or similar
Interface to Shared RAID

This schematic providesFirewall + Router with LAN (Gigabit This schematic provides
processor level SoS

context fidelity
Faster Slower

Ethernet et al.) Interfaces

6
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Notional SoS Layout: A System
P i U itProcessing Unit

Shared
RAID

System
Processing

Unit

System

System Firewall+ Router+
Radio Short Range

+Short Range Wireless
WAN Delays

System Firewall+ Router+
Radio Long Range

+Long Range Wireless
WAN Delays

S lli Li k

Note: The delay to the
WAN interface
processing units are the
same but performance

System Firewall+ Router+
Radio Satellite

+Satellite Link
WAN Delays

same but performance
will need to add WAN
delays for each link

Faster Slower

7
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Faster Slower

Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key
3 - Make sample

scenarios:
4 - Make list of

metrics (indicate
layout performance

view
resource limiters

from layout
What are sources

of performance
impacts in each?

sources,
architecture ties if

known)

6 - Find test events 7 - Circulate 5 - Add in required
that have occurred:
Rate the maturity of

each for each
metric

results/vetting:
What metrics and

events are
missing?

SWP metrics from
documents (quality/

best practice/
critical resources) g)

8 - Use populated
t i t i t 9 - Use architecture metrics matrix to

plan future tests
and mine data from
existing data sets

tie-ins to improve
software

performance

10 - Determine
repeat schedule

8
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Software/Hardware Performance Planning
Counter clock-wise,

faster to slower
DRAM

~1 micro-

Human
Interactions

FLASH

System
Over GiG

1 micro
second

~ 100 microseconds

>1 second

1 second
to minutes

Blade
System

Over GiG
(Indirect)Processor~ 100

microseconds

>1 second<1 microsecond System
Over GiG
(Direct)

~1 millisecond 5

RAID
(HDs) System on

Same

System on
Different
Platform

~1 millisecond ~ 5
milliseconds

0.1 to 1 second

Notional Representation
Blue =No data
Orange = Simulated Data
Green: Live Data

Designers should manage access
to slower methods when possible

Platform Platform

9
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Green: Live Data to slower methods when possible

Scale Issues

The work of each blade (CPU/memory/
LAN utilization middleware etc) willLAN utilization, middleware, etc.) will
increase based upon

• total number of systems in the
t f tsystem of systems

• how often the users need
services in other systems/

i it /bl dprocessing units/blades

Each increase in scale increases
resource needs per service
hosting blade

10
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key
3 - Make sample

scenarios:
4 - Make list of

metrics (indicate
layout performance

view
resource limiters

from layout
What are sources
of performance

impacts in each?

sources,
architecture ties if

known)

6 - Find test events 7 - Circulate 5 - Add in required
that have occurred:
Rate the maturity of

each for each
metric

results/vetting:
What metrics and

events are
missing?

SWP metrics from
documents (quality/

best practice/
critical resources) g)

8 - Use populated
t i t i t 9 - Use architecture metrics matrix to

plan future tests
and mine data from
existing data sets

tie-ins to improve
software

performance

10 - Determine
repeat schedule

11
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

A Possible Scenario - 1

User 1 on
Blade A on PU1

User 2 on Blade B
on PU2

User 1 Requests Data from User 2
Where is software performance

on PU2
Start End

Instance of Instance of Where is software performance
affected (delayed)?

Discovered
Service

Middleware

OS

Discovered
Service

Middleware

OS OSOS

Over Air

System 1 System 2

12
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

A Possible Scenario - 2

h ffWhat metrics affect
software

performance in

User 1 to User 2, examples:
• On Blade A: Service Call to Middleware

previous scenario?

• Delays Between Blade & Processing Unit
• Delays on Short Range Router/FW /Radio 1
• Delays on Short Range Router/FW /Radio 2• Delays on Short Range Router/FW /Radio 2
• LAN Latency From Short Range

Router/FW/Radio 2 to PU2’s LAN Blade

User 2 to User 1: Reverse previous bullet!

13
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key
3 - Make sample

scenarios:
4 - Make list of

metrics (indicate
layout performance

view
resource limiters

from layout
What are sources

of performance
impacts in each?

sources,
architecture ties if

known)

6 - Find test events 7 - Circulate 5 - Add in required
that have occurred:
Rate the maturity of

each for each
metric

results/vetting:
What metrics and

events are
missing?

SWP metrics from
documents (quality/

best practice/
critical resources) g)

8 - Use populated
t i t i t 9 - Use architecture metrics matrix to

plan future tests
and mine data from
existing data sets

tie-ins to improve
software

performance

10 - Determine
repeat schedule

14
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Make a Software Performance Metrics Matrix

Consider the design levels and requirements
Aid ‘d k’ i i• Aid: ‘desk’ running scenarios
from: intended use, take to break (‘rainy day’), and requirements

Engineering Metrics

A breakout diagram or similar

Memory Availability

Memory g
can be used to gather the list Level/Scenario

Memory in
Orphan ThreadsOrphan Threads

Count of
Other Users

15
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

The Initial Matrix
• Metric name: title, short name and key words for tagging
• Why it should be collected, including Need Type
• An example of the ways to collect it: How?
• Any ties to requirements, directly or as contributors
• High-Level Type: What aspect of the overall design am I assessing?High Level Type: What aspect of the overall design am I assessing?

Short Metric Title Why? Keywords (for How? Need High
Level# Name Metric Title Why? Tagging) How? Type Level
Type

1 Bcalls_
Count

Blade to blade calls
(tagged by service, by
process, by user, by

Limiting calls from blade
to blade reduces time
(due to bus use)

Blade, calls, count,
service, process

Bus monitoring via
Processing Unit
against process

Efficiency Engineer

process, by user, by
case/scenario/time

(due to bus use) against process
monitor

2 HDCalls_
Count

Service traffic count to
drives

Which services,
applications, clients of
applications are hitting

User, service, raid,
calls

Process-message
snapshots and
parse (or logging

Efficiency Engineer

pp g
the drives often. The
more often RAM is used
in lieu of the drives, the
quicker the app will run.

p (gg g
parse) for OS+bus
capture (log parse)

16
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key
3 - Make sample

scenarios:
4 - Make list of

metrics (indicate
layout performance

view
resource limiters

from layout
What are sources

of performance
impacts in each?

sources,
architecture ties if

known)

6 - Find test events 7 - Circulate 5 - Add in required
SWP metrics from that have occurred:

Rate the maturity of
each for each

metric

results/vetting:
What metrics and

events are
missing?

SWP metrics from
documents
(quality/best

practice/critical
resources) gresources)

8 - Use populated
t i t i t 9 - Use architecture metrics matrix to

plan future tests
and mine data from
existing data sets

tie-ins to improve
software

performance

10 - Determine
repeat schedule

17
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Adding Metrics Using Existing Matrix Guidance

Use list of 20 minimums to fill in list made from scenarios
Thi id t f t i th t i ht t h d f St 4• This provides a set of metrics that might not have emerged from Step 4
scenarios, but come from experience with similar systems

Add quality metrics related to software performanceq y p

Add guidance from requirements documents

Sample Key Metrics for Software Performance

Short Name Metric Title Why? How?

1 HDPart Ut Partition/disk usage over Avoid overfilling partitions (which can Repeated capture1 HDPart_Ut Partition/disk usage over
time/scenario/ factor

Avoid overfilling partitions (which can
slow or stop a system); determine
which situations stress disks

Repeated capture
from OS

2 LAN_Util Platform LAN utilization Prevent overuse of LAN on platform; SNMP MIB from
watch for processes that could be
done in blade instead of over LAN

routers

3 RAM_Util RAM utilization (by client,
service, application) over time

Prevent over-utilization, prevent
resource hogging/application

Repeated capture
from OS

18
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

service, application) over time resource hogging/application from OS

Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key
3 - Make sample

scenarios:
4 - Make list of

metrics (indicate
layout performance

view
resource limiters

from layout
What are sources

of performance
impacts in each?

sources,
architecture ties if

known)

6 - Find test
events that have 7 - Circulate 5 - Add in required events that have

occurred:
Rate the maturity
of each for each

metric

results/vetting:
What metrics and

events are
missing?

SWP metrics from
documents (quality/
best practice/critical

resources) metric g)

8 - Use populated
t i t i t 9 - Use architecture metrics matrix to

plan future tests
and mine data from
existing data sets

tie-ins to improve
software

performance

10 - Determine
repeat schedule

19
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Testing/Simulation Types

Cube of ‘Realism’ (Omitting Network*)

Assess realism per test event
1. Software

• Mod=Modeled
• Sim=Simulated
• Proto=Prototype
• EB=Early Build
• LB=Later Build• LB=Later Build
• Mat=Mature

2. Hardware
• Sim=Simulated

tw
ar

e

• EP=Early Prototype
• LP=Late Prototype
• IP=Initial Production
• FP=Full Production

A

S
of

t • FP=Full Production
3. Scale

• SB/MB=Single Blade/Multiple Blades
• PU/MPU=Process Unit/Multiple PUs

Hardware
• SS=Single System
• LS=Limited Multiple System
• PS=Partial Scale
• FS=Full Scale* One could extend to ‘Network’ for a 4th Dimension

20
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

• FS=Full Scale

So, Event A might be [Proto/Sim,EP/LP,LS] for example.
*=N.B. One could extend to network scale for a 4th Dimension

 One could extend to Network for a 4 Dimension

Test for Realism

Realism varies by metric inside each test event due to available
d i ftest assets and timeframes

Test targeted at reducing one set of risks might collect data on otherTest targeted at reducing one set of risks might collect data on other
related areas as a side effect

Review of full test artifacts can mine for ‘off-target’ collections

Off target metric collections might be at a lower fidelity level thanOff-target metric collections might be at a lower fidelity level than
metric included in risk target of test

21
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Trending and Correlation
U

 U
til

. %

BladeA,PU1,System1

U
 U

til
. %

BladeA, PU2,System2

Time

C
P

U

BladeB,PU1,System1

BladeC, PU1,System1

ar
e

Time

C
P

U

BladeB, PU2,System2

BladeC, PU2,System2

ar
e

Other correlations
• Regression comparisons?

M
id

dl
ew

a
C

al
ls

BladeA,PU1,System1

BladeB,PU1,System1
BladeC, PU1,System1 M

id
dl

ew
a

C
al

ls

BladeA, PU2,System2

BladeB, PU2,System2

BladeC, PU2,System2

• Gap analysis; compare
w/desired performance

Tie to architecture (design,
various levels)

Time

ch
e

H
its

BladeA,PU1,System1

BladeB PU1 System1

Time
he

 H
its

BladeA, PU2,System2

various levels)

Time

C
a BladeB,PU1,System1

BladeC, PU1,System1

Time

C
ac

h

BladeB, PU2,System2

BladeC, PU2,System2

System Architecture;

Scenario X, Step X

System Architecture;
Software Architecture

Which cross correlations have a payoff?

22
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Which cross correlations have a payoff?

Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key
3 - Make sample

scenarios:
4 - Make list of

metrics (indicate
layout performance

view
resource limiters

from layout
What are sources

of performance
impacts in each?

sources,
architecture ties if

known)

6 - Find test events 7 - Circulate 5 - Add in required
that have occurred:
Rate the maturity of

each for each
metric

results/vetting:
What metrics and

events are
missing?

SWP metrics from
documents (quality/
best practice/critical

resources) g)

8 - Use populated
t i t i t 9 - Use architecture metrics matrix to

plan future tests
and mine data from
existing data sets

tie-ins to improve
software

performance

10 - Determine
repeat schedule

23
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Who Vets the SWP Metrics Matrix?

Testing groups are usually scattered in various system groups and at
program levelprogram level

Bring representatives of each group together to examine each iteration
of metrics matrix

• Limit attendance to those who understand test metrics and fidelity levels
• Honesty not spin is importantHonesty, not spin, is important
• Get leadership backing

Vet matrix with this newly-formed Technology Interchange Group (TIG).

24
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Vetted Matrix and Procedure Linkage

Use matrix as a starting point for discussion for initial TIG meeting
Di t i d t W thi i d?• Discuss matrix data: Was anything missed?
– All that has happened to date: Does it include all test events?
– Knowledge of events at each scale: Does it capture the correct realism and scale of

h t?each event?
• Revise matrix

– Include missed or incomplete items discovered
– Gain consensus on correctness/completeness of metrics: Are we measuring the

right performance? Does the list account for SWP issues that may emerge later?

Re-circulate to confirm results
• Store matrix in configuration-controlled, commonly accessible location

(Sharepoint, Wiki, etc.)
• Encourage TIG to comment and distribute to their teams for commentg
• Collect comments, confirm veracity of updates with TIG, revise matrix

Repeat until there is a strong confidence/consensus in matrix

25
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key
3 - Make sample

scenarios:
4 - Make list of

metrics (indicate
layout performance

view
resource limiters

from layout
What are sources

of performance
impacts in each?

sources,
architecture ties if

known)

6 - Find test events 7 - Circulate 5 - Add in required
that have occurred:
Rate the maturity of

each for each
metric

results/vetting:
What metrics and

events are
missing?

SWP metrics from
documents (quality/
best practice/critical

resources) g)

8 - Use populated
t i t i t 9 - Use architecture metrics matrix to

plan future tests &
mine data from

existing data sets

tie-ins to improve
software

performance

10 - Determine
repeat schedule

26
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Metrics/Planning for Metrics Collection using
h M ithe Matrix

Insert metrics with low event coverage into future test events.g
• What metrics (rows) in the matrix have no associated events (i.e. empty

columns)? Which metrics were only measured at a low scale or fidelity?
• Insert metrics into event plans and insert planned events into the matrixInsert metrics into event plans and insert planned events into the matrix

Make metric list a standard minimum for tests at any scale

Create correlation standards and a history of what correlations have
lead to problem discoverylead to problem discovery

Agree on initial conditions for tests

27
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Ideas for Entry Criteria: Metrics Infrastructure

Consolidated Metrics Library Database
C l t d d i l i t• Complex trends and simple points

• Easily accessible by architects/engineers/development/other test groups
• Metadata tagging using a standardgg g g

Insert into test schedule
R f t t t t l i th h TIG• Run future test event planning through TIG

• Invite group edits to matrix

28
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key
3 - Make sample

scenarios:
4 - Make list of

metrics (indicate
layout performance

view
resource limiters

from layout
What are sources

of performance
impacts in each?

sources,
architecture ties if

known)

6 - Find test events 7 - Circulate 5 - Add in required
that have occurred:
Rate the maturity of

each for each
metric

results/vetting:
What metrics and

events are
missing?

SWP metrics from
documents (quality/
best practice/critical

resources) g)

8 - Use populated
t i t i t

9 - Use
hit t timetrics matrix to

plan future tests &
mine data from

existing data sets

architecture tie-
ins to improve

software
performance

10 - Determine
repeat schedule

29
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Software Performance Management: A Team
EffEffort

SOA SoS Program

Internal P iCOTS/GOTS External

... ...

Software
Service

Developers

Processing
Hardware
Developers

System
Integrator

Network Unit
Providers

COTS/GOTS
Services

Developers

Software
Service

Developers

Test Group Test Group Test Group Test Group Test GroupTest Group

SoftwareSoftware
Performance TIG

30
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Relating Architecture to Metrics

It is useful with a vetted metrics matrix to tie each metric to architecture
U ti t i f• Use ties to improve performance

There are likely no orphan metrics; they are just more complex to trace y p ; y j p
to architecture and design

R t d l f hi h fid lit d li ti t iRepeated columns of higher fidelity and realistic events improve
confidence that the metric is covered and performance quantified;
use these to plan tests

Architecture and design elements tied to performance will gain
confidence with successive events; again test planningconfidence with successive events; again test planning

31
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Conclusions

Understanding software performance for a SoS SOA system is complex;
managers need to:managers need to:

• Understand the system’s respective performance affecting levelsy g
• Develop a metrics list derived from scenarios and other sources
• Tie in test events to make the metrics matrix
• Have a way to circulate the matrix by understanding the organization• Have a way to circulate the matrix by understanding the organization
• Feedback the matrix and metrics testing results to architecture leads
• Keep the matrix current or status will be unknown

32
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

BACK-UP SLIDES

33
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Acronym List

CM Configuration Management
COTS Common Off The Shelf
CPU Central Processing Unit
DoD U.S. Department of Defense
DRAM Dynamic Random Access MemoryDRAM Dynamic Random Access Memory
E2E End-to-End
FW Fire Wall
GiG Gl b l I f ti G idGiG Global Information Grid
GUI Graphical User Interface
HD Hard Drives
H/W Hardware
LAN Local Area Network
LUT Limited User Test
IPT Integrated Process Team
M&S Modeling and Simulation

34
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Acronym List

OS Operating System
PU Processing Unitg
RAID Redundant Array of Independent Disks
RAM Random Access Memory
RFP Request For ProposalRFP Request For Proposal
SE Systems Engineering
SEC Army Software Engineering Center
SOA S i O i t d A hit tSOA Service Oriented Architecture
SoS System of Systems
SW Software
SWP Software Performance
TIG Technology Interchange Group
TRL Technical Readiness Level
WAN Wide Area Network

35
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Services

“Services and applications are defined as primarily software based
components which perform specific functions using standardcomponents which perform specific functions using standard
interfaces. A service is defined as a mechanism to enable access to
one or more capabilities, where the access is provided using a
prescribed interface and is exercised consistent with constraints

d li i ifi d b th i d i ti (f) Aand policies as specified by the service description (reference w). A
service is a function that is well-defined, self contained, and does
not depend on the context or state of other services. It easily allows
for reuse in yet to be determined functions Applications arefor reuse in yet to be determined functions. Applications are
designed to perform a specific function directly for the user or for
another application.”
US DoD CJCSI 6212.01E, 15 December 2008US DoD CJCSI 6212.01E, 15 December 2008

36
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

System of Systems:

See “Exploring Enterprise, System of Systems, and System and Software Architectures”
by Paul C. Clements, SEI: by au C C e e ts, S
http://www.sei.cmu.edu/library/abstracts/presentations/22jan2009webinar.cfm

“System of Systems (SoS) Architecture
• A SoS is a set or arrangement of systems that results when independent and useful systems are A SoS is a set or arrangement of systems that results when independent and useful systems are

integrated into a larger system that delivers unique capabilities.
• Varieties:
� Directed: SoS objectives, management, funding and authority in place; systems are

subordinated to the SoSsubordinated to the SoS
� Acknowledged: SoS objectives, management, funding and authority in place; systems retain

their own management, funding and authority in parallel with the SoS
� Collaborative: No objectives, management, authority, responsibility, or funding at the SoS

level; systems voluntarily work together to address shared or common interest
� Virtual: Like collaborative, but systems don’t know about each other (for example, the

Internet)”

37
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

Contact Information

Presenter / Point of Contact
Ji W l / B M

U.S. mail:
Jim Wessel / Bryce Meyer
Acquisition Support Program
Telephone: +1 908-418-0323 /

Software Engineering Institute
Customer Relations
4500 Fifth AvenueTelephone: 1 908 418 0323 /

+1 314-800-3159
Email: jwessel@sei.cmu.edu /

4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

bmeyer@sei.cmu.edu

World Wide Web: Customer RelationsWorld Wide Web:
www.sei.cmu.edu
www.sei.cmu.edu/contact.html

Customer Relations
Email: customer-relations@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

38
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM U OS O C , C US , O SU S O O
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to use,Government of the United States has a royalty free government purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

39
SSTC 2010
J. Wessel, B. Meyer May 2010
© 2010 Carnegie Mellon University

